基督教香港信義會信義中學

中二電腦科

Arduino 編程基礎

姓名	:	

斑別: _____()

目錄

第一章	亮起一顆 LED	2
第二章	我的音樂盒	8
第三章	保安警報裝置	13
第四章	物聯網 (IOT) 簡介	19
課業	Arduino 考試課業	20

教學影片: http://www.lss.edu.hk → 翻轉教室 → 電腦科 → 中二 登入名稱 = lssvideo 密碼 = lssvideo

功課目錄

日期	内容	評分

第一章

亮起一顆 LED

1.1 Arduino 簡介

Arduino 是一個開放源(open-source)的電子平台。你可以在 Arduino 平台編寫程式控制由 Arduino 電路板拼製出來的設備。 教學短片:

Arduino 電路板有兩種埠(pin)連接輸入/輸出裝置,分別稱為:數碼埠(digital pin)、模擬埠(analog pin)。

課堂活動

1. 以下是連接數碼埠的輸入/輸出設備例子。請寫出它們的名稱及用途。

2. 以下是連接模擬埠的輸入設備例子。請寫出它們的名稱及用途。

1.2 認識麵包板的操作

麵包板提供一個簡便的方法建立 Arduino 電路(Arduino circuit),使用者不需使用焊接工具便能把 Arduino 和電子零件(electronic parts)連接成為一個 Arduino 電路。 一般的麵包板有很多行的細孔,電流能在同一行的細孔間流通。同時,麵包板左右兩邊皆有一行的電源軌(power rail),方便電路 Arduino 電路上的零件取電。

		-	-	-	-	-		-	-	-	-	-		Ξ.	۰.	-	-	-		-	•	•		-		-	-	-	-	-	
L	8	9	5		•		1	=				=			=	=	-	=		=		=	=	=	ā	=	=	-		-	1
	30	29	28	27	26	25	24	23	22	21	20	19	100	17	16	15	14	13	12	11	10	9	00	7	0	5	- 24	3	2	-	
2		1	-		1	1	11	1	11				-	1	1		1				1							. 11			C
σ		1	1			11	11	11	U			1			1													u			C
0					1		18	11	11			-																1			c
٩					1																							1			C
Ð								- 11	(0		•	-														•			•		a
																									ш			1			100
	1		18	11	1							11		1							1	1									1
-				1								11																			-
		.11												-	1															н	-
	- 30	= 29	= 28	= 21	07 =	= 25	= 24	- 23	= 22	- 21	= 20	= 19	- 18	-	1	- 15	-	- 13	- 12		-10	-	00	- 7	II 6		-	3	2	-	-
						-			and a		-	-					-				_				-	-	1000				

備註:一般而言,我們會把電源 的正極(+)接連到紅色的電 源軌,負極(-)接連到藍色 的電源軌上。

課堂練習

1. 試在空格上填上適當的字母,以表示哪一點與麵包板上的"A"、"B"、"C"、"D"和 "E"是連通的。

1.2 你的第一個 Arduino 電路設備

<u>程式`描述</u>

在此 Arduino 活動,你需要製作一個令一顆 LED 不停閃動的電路板。

3. 上傳及執行程式

1. 以 USB 線把 Arduino 電路板和電腦連接起來。

2. 按一下"驗證"按鈕,然後再按"上傳"按鈕,把程式載入至 Arduino 電路板內。

題目

1.	描述	LED 的運作情況。
2.	解諱 (a)	以下的 Arduino 指令: pinMode(13, OUTPUT)
		答案:定義 埠 是一個類型的埠。
	(b)	digitalWrite(13, HIGH)
	(c)	delay(1000)

挑戰題

更改電路板及程式,使電路板上的綠色 LED 和紅色 LED 不停地交錯地閃動。

題目

 在電路上加入一個綠色 LED 和 一個電阻,完成整個電路圖。

2. 在空格內填上適當的指令。

```
void setup() {
    pinMode(13, OUTPUT );
```

}

void loop() {
 digitalWrite(13 , HIGH);

delay(_____) ;

digitalWrite(13, LOW);

}

課後練習

1. 寫出以下 Arduino 電路板指示部分的名稱。

2. 寫出以下電路板指示部件的名稱。

3. 解譯以下 Arduino 程式的作用。

本課其他重點 / 學習心得

1.

2.

第二章

我的音樂盒

2.1 蜂鳴器

蜂鳴器(Buzzer) 是一個能產生聲音的細小部件,它的功能與揚聲器相似。但是蜂鳴器需要的電源較少, 產生的聲音音量也較小。(注意:輸出至蜂鳴器的音源訊號與揚聲器也不同。本課程不作詳述。)

當電流傳給蜂鳴器,蜂鳴器內部的小瓷碟便會震動,拍打空氣,從而產生聲音。我們可以藉着更改輸出電流的頻率來令蜂鳴器器產生不同的音調。

2.2 程式 1: 使 Arduino 發聲

程式`描述

你需要製作一個 Arduino 電路板及編寫程式,使到 Arduino 控制 一個蜂鳴器發出不同的聲調。

110

_(1KΩ)

<u>零件</u> (寫出零件的名稱。)

和一條 USB 線。

教學短片:

電腦 → 中二→Arduino Ch2A

_____X 6

按照以下三個步驟建立你的 Arduino 電路和程式。

1. 連接電路

建立如下的電路。

提示:如要蜂鳴器發出較大的聲響,可移除電阻,並把線 A 連接至線 B 同一行細孔上。

2. 编寫程式

3. 上傳及執行程式

- 1. 以 USB 線把 Arduino 電路板和電腦連接起來。
- 2. 按一下"驗證"按鈕,然後再按"上傳"按鈕,把程式載入至 Arduino 電路板內。

題目

- 1. 描述程式運作情況。
- 2. 解譯以下 Arduino 指令的功能:
 - (a) pinMode(9, OUTPUT)
 - (b) tone(9, 300, 1000)

挑戰題

修改程式,使它播放校歌首四小節的音樂。所需的校歌簡譜如下:

<u>D4</u>	G4	<u>A4</u>	D4	<u>B4</u>	<u>B4</u>	<u>A4</u>	<u>G4</u>	D5	<u>A4</u>	A4	<u>B4</u>	A4	<u>G4</u>	<u>G4</u>	<u>E4</u>	<u>G4</u>	A4
香	海	Ż	濱	蜿	蜒		九	龍	峃	戀	佳	氣	毓	秀		鍾	癳

音調	D4	E4	F4	G4	A4	B4	C5	D5
頻率值	293.66	329.63	349.23	392.00	440.00	493.88	523.25	587.33

向老師展示你的成品,並把程式列印及貼在以下的空格內。

如有需要,請摺疊程式的硬副本。

課後練習

指出蜂鳴器和揚聲器的分別。
分析以下 Arduino 指今, 然後回答問題。
tone(8, 300 ,2000);
delay(2100);
蜂鳴器是連接着 Arduino 的哪一個埠?
蜂鳴器會發響多久?
修改以上指令,使蜂鳴器發出更高的音調及發聲的時間是原本的兩倍。

3. 在以下的線路圖上加入一個電阻、一顆 LED 和所需的電線,並在下方的 Arduino 程式加入指令, 使它能發聲一秒然後停頓兩秒,同時,當蜂鳴器響起時, LED 也會亮起來。

void	setup() { pipMode(9_OUTPUT);
	pinMode(7, OUTPUT);
}	
void	loop() {
	tone(9, 400 ,1000);
	digitalWrite();
	delay();
1	
}	
-	
日二	L学省 — 編爲聿記
1.	蜂鳴器是用作
2.	令蜂鳴器發聲的 Arduino 是
	這指令有三個參數,它們的名稱及用途是:
	1) pin 連接蜂鳴器的埠編號
	2)
	,
	3)
本課	其他重點 / 學習心得

第三章

保安警報器

3.1 超聲波感應器

超聲波感應器(ultrasonic sensor)是一個能量度附件物件距離的部件。超聲波感應器發出一段超聲波訊號,然後計算反射訊號(回應, echo)回到感應器的時。超聲波感應器一個開口負責發射訊信,另一開口 負責接收回應。

以下公式可用作計算物件的距離:

距離 = (時間 X 聲波速度)/2 (備註: 聲波速度 = 341 m/s)

我們能夠把超聲波感應器接連至 Arduino 電路板,來偵測附近物件的距離,從而按着不同的偵測距離進行不同的回應行動。

題目

試建議一個把超聲波感應器應用在 Arduino 的應用例子。

3.2 程式 1: 量度物件距離

程式`描述

你需要製作一個 Arduino 電路板及編寫程式,來偵測超聲波感應器前面的物件的距離,然後把距離結果顯示在屏幕上。

零件 (寫出零件的名稱。)

1. 連接電路板

教學短片: 電腦 → 中二→Arduino Ch3A

建立如下的電路板。

2. 编寫程式

long time;	定義變量(variables)為長整數 long integer time 和 distance 是用作儲存計算結果
<pre>void setup() { Serial.begin (9600); pinMode(12, OUTPUT); pinMode(10, INPUT); }</pre>	設計埠的數據傳送速度為 9600 (以配合超聲波感應器的運作速度)
<pre>void loop() { digitalWrite(12, LOW); delay(2); digitalWrite(12, HIGH); delay(10); digitalWrite(12, LOW);</pre>	這組指令傳出一個聲波訊號,然後讀取反 射訊號所需的時間。
<pre>time = pulseIn(10, HIGH); distance = time/58.2; Serial.println(distance); delay(1000); }</pre>	計算物件距離

3. 上傳及執行程式

1. 開啟「序列埠監控視窗」(Serial Port Monitor Window):

[工具] → [序列埠監控視窗]

並設定傳輸速度為 9600 baud。

教學短片:

電腦 → 中二→Arduino Ch3B

- 2. 以 USB 線把 Arduino 電路板和電腦連接起來。
- 3. 按一下"驗證"按鈕,然後再按"上傳"按鈕,把程式載入至 Arduino 電路板內。

題目

- 1. 描述程式運作情況。
- 2. 「序列埠監控視窗」顯示的是甚麼資訊?
- 3. 解譯以下的 Arduino 指令。
 - (a) pulseIn(2, HIGH);

這指令傳回 _____

(b) Serial.println(distance);

這指令把 ______ 顯示在 _____

3.3 程式 2: 製作一個保安警報器

程式`描述

修改 3.2 節的 Arduino 電路板及程式,使它每當偵測到有物件距離少於 10cm 時便發出 1 秒的 響聲。

問題

1. 在以下 Ardunio 電路板加入<u>一個蜂鳴器和一個電阻。</u>

void setup() {	
Serial.begin (9600);	
pinMode(12, OUTPUT);	
pinMode(10, INPUT);	
}	
void loop() {	
digitalWrite(12, LOW);	
delay(2);	
digitalWrite(12, HIGH);	
delay(10);	
digitalWrite(12, LOW);	
time = pulseIn(10, HIGH);	
distance = time/58.2;	
Serial.println(distance);	
if () {	指令 if() 的語法:
	if (條件) {
	指令;
}	
delay(1000);	指令;
}	}

挑戰題

修改 3.3 節的程式,使它能數出及顯示發出聲響的次數。並把你的程式貼在以下的空格內。 (提示:加入指令 long counting;)

如有需要,在貼上時,請摺疊你的程式副本。

課後練習

.

寫出以下指令的功能。
 Serial.begin (9600);

X = pulseIn(9, HIGH); (假設埠 pin 9 接連着超聲波感應器的"回應"針頭)

Serial.println(2000);

2. 假設一顆紅色 LED 連接着埠 5,一顆綠色 LED 連接着埠 6,變量 Y 是儲存超聲波感應器 偵測物件的距離。

完成以下的程式使每當 Y < 15 時, Arduino 便亮起紅色 LED, 否則就亮起綠色 LED。.

if (_) {	
	digitalWrite();
	digitalWrite();
}			
if () {	
	digitalWrite();
	digitalWrite();
}			

delay(50);

3. 按照題目 2 完成以下的 Arduino 電路板,你需要加入兩個電阻、1 個紅色 LED、1 個綠色 LED 和所需的電線。

自主學習 — 編寫筆記

1.	超聲波感應器是用來					
2.	在 Arduino 發出一個超聲波訊號的指令是:					
3.	指令 pulseln() 是用作					
3.	指令 if() 的語法是:					
	if () {					
本調	, 果其他重點 / 學習心得					

第四章

物聯網(Internet of Things, IoT)

5.1 物聯網簡介

- IoT 是一個包含電腦、電子設備、人們和動物的巨大的網絡。
- 每一個在物聯網內的"物件"能夠自動地傳送數據至其他物件。
- 每一個在物聯網內的"物件"都有一個唯一獨有的識別碼。
- 大多數在物聯網內的"物件"是採用無線技術連接物聯網,例如藍牙和 WiFi。
- 一些物聯網會接連互聯網,使它能夠與遠方的物件通訊。

5.2 物聯網的應用例子

- 農業耕種: 自動控制農場內的氣溫及濕度
- 智能家居: 燈光控制和室溫控制
- 大廈管理: 大廈保安管理
- 健康管理: 植入式心臟監察器
- 交通運輸: 無人駕駛、道路交通控制系統

課堂活動

以 4-5 人一組,討論以下其中一個議題,限時 5 分鐘。然後向全班同學匯報你們的討論結果。 同時,請簡短記錄各組的匯報內容。

- 1) 建議物聯網對我們未來生活帶來的一個正面影響。
- 2) 建議物聯網對我們未來生活帶來的一個危機。

3) 指出一個你曾體驗過的物聯網應用例子。

4) 你認為物聯網將來會成為我們生活的重要部分嗎?為甚麼?

期考課業

題目1 空氣鋼琴

課業要求

請設計及製作一個 Arduino 電路板使它能夠以超聲波感應器偵你的手與感應器的距離,並按距離播放 不同音調的樂聲。以下為空氣不同音調的對應頻率。

音調	С	D	E	F	G	А	В
頻率	261.63	293.66	329.63	349.23	392.00	440.00	493.88
距離(cm)	X < 10	10 <= X < 20	20 <= X <30	30<= X < 40	40 <= X < 50	50 <= X < 60	60 <= X <70

請製作一個小盒子及一個有標示的紙板,優化空氣鋼琴外觀和顯示「琴鍵」的位置。

請在老師面前使用你的空氣鋼琴彈奏以下的樂曲。

London Bridge

London Bridge is falling down, G A G F E F G

Falling down, falling down. D E F E F G

London Bridge is falling down, G A G F E F G

My fair lady! D G E C

題目2智能交通燈系統

課業要求

請設計及製作一個 Arduino 電路模擬一個「智能交通燈系統」。這交通燈系統包括:

- 汽車交通燈 (紅/黃/綠)
- 行人交通燈 (紅/綠)
- 提示行人的聲音
- 一個偵測裝置,當它偵測到有行人站在過路處範圍時,會自動縮短等候過馬路的時間

如你加入創新功能在你的設計,會獲<u>額外加分</u>。 你的作品必須裝飾成為具像真度的交通燈模型。

題目3自訂設計題目

設計及製作一個能夠在日常生活中應用的 Arduino 電路產品,這產品的設計和製作難度必須高於題目 1 和 2。同時, 學生必須先向老師解說此設計概念, 並得老師批準後才可開始進行製作。

提交課業內容:

- 1) 你的 Arduino 電路
- 2) 電路圖 (老師會派發電路圖紙)

時限

你必須在 31/5 或之前提交完成的作品及向老師示範成品的運作。

評分準則

	分數
電路圖	15
作品功能	30
作品外觀	10
展示表現	5

answer page

```
CH1

Challenging program answer

void setup() {

    pinMode(13, OUTPUT);

    pinMode(10, OUTPUT); // any digital pin number, same below

}

void loop() {

    digitalWrite(13, HIGH);

    digitalWrite(13, HIGH);

    digitalWrite(10, LOW);

    delay(200); // any number

    disitalWrite(12, LOW);
```

```
digitalWrite(13, LOW);
digitalWrite(10, HIGH);
delay(200); // any number
```

```
}
```

air paino

/*

HC-SR04 Ping distance sensor: VCC to arduino 5v GND to arduino GND Echo to Arduino pin 2 Trig to Arduino pin 3 */

#define echoPin 2 // Echo Pin
#define trigPin 3 // Trigger Pin
#define LEDPin 13 // Onboard LED

int maximumRange = 2000; // Maximum range needed
int minimumRange = 0; // Minimum range needed
long duration, distance; // Duration used to calculate distance

```
void setup() {
 Serial.begin (9600);
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 pinMode(LEDPin, OUTPUT); // Use LED indicator (if required)
}
```

void loop() {

```
/* The following trigPin/echoPin cycle is used to determine the
 distance of the nearest object by bouncing soundwaves off of it. */
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
```

digitalWrite(trigPin, HIGH); delayMicroseconds(10);

```
digitalWrite(trigPin, LOW);
```

```
duration = pulseIn(echoPin, HIGH);
```

```
//Calculate the distance (in cm) based on the speed of sound.
 distance = duration/58.2;
```

```
if (distance >= maximumRange || distance <= minimumRange){
 Serial.println("-1");
 digitalWrite(LEDPin, HIGH);
}
else {
/* Send the distance to the computer using Serial protocol, and
turn LED OFF to indicate successful reading. */
Serial.println(distance);
digitalWrite(LEDPin, LOW);
        if (distance < 10) {
             tone(8, 261.63, 1000);
```

```
delay(1001);
```

```
}
```

}

```
if ((distance >=10) && (distance <20)) {
     tone(8, 293.66, 1000);
```

```
delay(1001);
```

```
if ((distance >=20) && (distance <30)) {
```

```
tone(8, 329.63, 1000);
```

```
delay(1001);
 }
 if ((distance >=30) && (distance <40)) {
      tone(8, 349.23, 1000);
      delay(1001);
 }
if ((distance >=40) && (distance <50)) {
      tone(8, 392.00, 1000);
      delay(1001);
 }
 if ((distance >=50) && (distance <60)) {
      tone(8, 440, 1000);
      delay(1001);
 }
if ((distance >=60) && (distance <70)) {
      tone(8, 493.88, 1000);
      delay(1001);
 }
if ((distance >=70) && (distance <100) ) {
      tone(8, 523.25, 1000);
      delay(1001);
 }
```

```
//Delay 50ms before next reading.
delay(50);
```

}

}

TERM PROJECT (NEVER DISCLOSE THIS TO STUDENTS!)

Project 1 air piano

```
Sample result.
long time;
long distance;
long counting;
void setup() {
   Serial.begin (9600);
  pinMode(12, OUTPUT);
  pinMode(10, INPUT);
  pinMode(8, OUTPUT);
  counting = 0;
}
void loop() {
  digitalWrite(12, LOW);
  delay(2);
  digitalWrite(12, HIGH);
  delay(10);
  digitalWrite(12, LOW);
  time = pulseIn(10, HIGH);
  distance = time/58.2;
  Serial.println( distance );
  if (distance < 10) {
       Serial.println("C");
       tone(8,261.63,1000);
     }
  if (( distance >= 10 ) && ( distance < 20)) {
       Serial.println("D");
       tone(8,293.66,1000);
     }
  if (( distance >= 20 ) && ( distance <30)) {
       Serial.println("E");
     tone(8,329.63,1000);
     }
          if ((distance >= 30) && (distance < 40)) {
       Serial.println("F");
               tone(8, 349.23, 1000);
               delay(1001);
          }
        if ((distance >=40) && (distance <50)) {
     Serial.println("G");
                 tone(8, 392.00, 1000);
               delay(1001);
          }
          if ((distance >=50) && (distance <60)) {
                 Serial.println("A");
```

```
tone(8, 440, 1000);
    delay(1001);
}
if ((distance >=60) && (distance <70)) {
        Serial.println("B");
        tone(8, 493.88, 1000);
        delay(1001);
}
if ((distance >=70) && (distance <100) ) {
        Serial.println("C' ");
        tone(8, 523.25, 1000);
        delay(1001);
}
```

```
delay(500);
```

}